

EQUIVARIANCE DISCOVERY BY LEARNED PARAMETER-SHARING

Raymond A. Yeh[†] Toyota Technological Institute at Chicago[†]

INTRODUCTION

Motivation:

- Equivariance is an effective inductive bias
- Convolution networks achieve shift equivariance through parameter-sharing
- Can we discover equivariance from data?

Contribution:

- Equivariance discovery by learning how to share model parameters from data
- Analysis on the benefit of learning a parametersharing scheme
- Empirical results on recovering shift and permutation equivariance

RUNNING EXAMPLE

Convolution:

$$\mathbf{y}[k] = \sum_{j} \mathbf{x}[j+k]\theta[j]$$

and let $\mathbf{x} \in \mathbb{R}^3$ and $\mathbf{k} = [2, 1]$, we equivalently write convolution as y = Kx, where

Learning parameter-sharing as a bi-level optimization:

Practical Considerations:

Analysis on Gaussian Data:

•
$$\hat{ heta}_{ extsf{gt}} = A_{ extsf{gt}} \hat{\psi}$$

• MSE Gap: MS

Yuan-Ting Hu Mark Hasegawa-Johnson Alexander G. Schwing University of Illinois at Urbana-Champaign

- A selection matrix A to represent a sharing scheme
- $A_{ij} \in \{0, 1\}, \sum_{j} A_{ij} = 1$
- A selects the model parameters from ψ

$$\underbrace{\mathbf{A}\psi^{*}(\mathbf{A})}_{\boldsymbol{\theta}}, \mathcal{V} \quad \text{s.t. } \psi^{*}(\mathbf{A}) = \arg\min_{\boldsymbol{\psi}} \mathcal{L}(\mathbf{A}\psi, \mathcal{T}),$$
$$\mathbf{A} \in \{0, 1\}^{K \times K}, \sum_{i} \mathbf{A}_{ij} = 1 \quad \forall i.$$

• Relax $A \in [0, 1]^{K \times K}$ and optimize using gradient based methods • Penalty term 1: Entropy H(A) encourages A_{ij} to be closer to 0 or 1 • Penalty term 2: Nuclear norm $||A||_*$ encourages A to be low-rank

$$\mathbf{y} \sim \mathcal{N}(\boldsymbol{A}_{\mathtt{gt}} \boldsymbol{\psi}_{\mathtt{gt}}, \sigma^2 \boldsymbol{I}).$$

• *i.i.d.* Gaussian with shared means across dimensions

• $\theta_{gt} = A_{gt} \psi_{gt}$: Ground-truth mean

• $\hat{\theta}_{val} = A_{val} \psi$: Estimated ψ with A_{val} from our approach

 ψ : Estimated ψ with A_{gt}

$$SE(\hat{\theta}_{val}) - MSE(\hat{\theta}_{gt})$$

RESULTS			
Claim the M	a: SE	Gi E g	ver ap
where	r	_	$rac{ \mathcal{T} }{ \mathcal{D} }$
	MSE Gap	12 - 10 - 8 - 6 - 4 - 2 - 0 -	

Experiments (Sum of Numbers):

The task is to regress to the sum of a sequence of numbers provided in text format.

- *E.g.*, given the input (âĂIJone,âĂİ âĂIJfiveâĂİ) the model should output 6
- ℓ_2 -loss between the predicted an ground-truth
- and A_{gt}

(1)

Please find additional experiments in the paper

TT **ILLINOIS**

h data following Eq. (1), with probability $1 - \alpha$ and $\alpha < \exp \frac{-K}{10}$, is upper bounded by

• Partition distance between the recovered A_{val}

• Partition distance measures the number of assignments that must be changed for one sharing scheme to be identical to the other.

